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Self-similar spin-up and spin-down in a cylinder of 
small ratio of height to diameter 

By F. V. DOLZHANSKII,  V. A. KRYMOV A N D  D. Yu. M A N I N  
Institute of Atmospheric Physics, 3, Pyzhevsky, Moscow, 109017, USSR 

(Received 22 June 1990 and in revised form 15 July 1991) 

A new approach to the well-known spin-up from rest problem is proposed based on 
a search for self-similarity. The Wedemeyer (1963) model is first tested for spin-down 
to rest and then used for spin-up. The general-form solution is found and is shown 
to tend to a self-similar limiting stage. Experimental results in a cylinder of small 
height-to-diameter ratio are analysed to demonstrate this self-similarity in a certain 
range of external parameters. 

1. Introduction 
The present study deals with the spin-up problem, i.e. the process of the fluid 

angular velocity w adjustment to the impulsive change of the cylindrical container 
rotation rate. The external parameters controlling the process are the fluid viscosity 
v ,  the height H ,  and radius R of the cylinder, the initial angular velocity of the 
cylinder Q, and its increment AQ. We assume the fluid to be incompressible and 
homogeneous. Spin-up from rest (52 = 0, AQ > 0) is considered in this paper. 

The definitive paper by Greenspan & Howard (1963) revealed the basic mechanism 
underlying the spin-up process. They considered the case of a fluid confined between 
two infinite plates (R = a). Under the assumption that Ekman and Rossby numbers 
are both small, E = v/QH2 4 1 ,  E = AQ/Q 4 1 respectively, they were able to obtain 
an asymptotic solution. The solution shows that the timescale of spin-up is 7E = 
H/(Qv)a,  which is much greater than the Ekman layer timescale T~ = Q-l and much 
less than the viscous timescale 7, = H 2 / v .  

The effect of the sidewall is negligible in the linear ( E  < l),  inviscid ( E  < 1) case. In 
fact, the sidewall can influence the flow only in the thin Proudman-Stewartson Ei- 
layer (Proudman 1956 ; Stewartson 1957 ; Greenspan 1968), via both viscous diffusion 
and advection of momentum. This is not the case when the Rossby number is no 
longer small, when nonlinear effects become important and one should distinguish 
between spin-up and spin-down (which is unnecessary in the linear case). The 
presence of the sidewall should also be taken into account. 

Greenspan & Weinbaum (1963) and Benton (1973) extended the method of 
Greenspan & Howard (1963) to the weakly nonlinear case (up to the terms of order 
2) .  They found that nonlinearity would slightly decrease the characteristic time of 
spin-down and increase that of spin-up. Weidman (1976a, b )  conjectured that an 
algebraic, rather than exponential, dependence of the azimuthal velocity on time, 
v cc t-', is likely for the spin-down to rest between infinite plates. This can be easily 
understood if we write h - w / T ~ ,  7E = H / ( w v ) i  being the current Ekman timescale. 
This gives h - d, whence w - t-2. 

The sidewall instabilities, however, can make the fluid motion become turbulent 
in spin-down (cf. Mathis & Neitzel 1985), which prevented Weidman (1976a, b)  from 
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experimentally verifying the dependence o - tV2.  This problem can be eliminated 
(Krymov & Manin 1986a, hereinafter referred to as K&Ma) by using a cylinder with 
R B H. The experimental data obtained there are in good agreement with theoretical 
predictions. I n  addition, the case of spin-down with a non-solid-rotation initial 
conditions was considered theoretically and a class of self-similar solutions was 
found. In  Krymov & Manin (1986b, hereinafter K&Mb) the self-similar spin-down 
was observed experimentally in a space between two cones. 

Another branch of the spin-up problem, namely spin-up from rest, originated from 
the work of Wedemeyer (1964), who constructed a semi-empirical equation based on 
the assumption that the boundary layers are of the Karman type (Greenspan 1968). 
This equation is obtained from an equation for the internal region (beyond the 
boundary layers) for the case of small Ekman number, which can be written down 
in dimensionless form as 

Here v is the azimuthal velocity and u is the radial velocity. Radius r is normalized 
by R, time t by 7E and velocity by OR. Upon expressing u in terms of v via the Ekman 
suction condition u = KE+v-r)  (for spin-up), where K is a constant of the order of 
unity, the equation takes the closed form 

Note that the dimensionless parameter EiH2/R2 can be interpreted as the squared 
ratio of the Proudman-Stewartson Ef layer width over the radius of the container. 
It is defined in a similar manner as the Ekman number (which is the squared ratio 
of the Ekman layer width over the depth of the fluid), so we shall call i t  the 
Stewartson number 

(2) 
By neglecting the radial viscous term Wedemeyer obtained a solution which 

describes the fluid acceleration during spin-up. According to this solution the fluid is 
sucked into Ekman layers and accelerated there towards the sidewall. Then, pushed 
into the internal region, it takes the place of the as yet non-rotating fluid. The 
characteristic time of spin-up from rest is again of the order r E .  An important feature 
of the process is the existence of a vertical layer dividing the rotating and non- 
rotating fluid. It originates at the sidewall and propagates inwards, being clearly 
visible via the aluminium powder technique (Savag 1985). Venezian (1969) showed 
that this layer is actually the propagating Stewartson Ei-layer. 

Though qualitative agreement with the Wedemeyer solution is clear, quantitative 
agreement with laboratory or numerical experiment was never achieved. The efforts 
of different workers were aimed mainly a t  the improvement of the Wedemeyer model 
by taking account of the radial viscosity (Venezian 1969; Watkins & Hussey 1973, 
1977; Kitchens 1980) or by modifying the Ekman pumping condition (Weidman 
1976a, b ;  Benton 1979; Kitchens 1980). In  the present work another approach is 
proposed. 

We note, first of all, that  the only external parameter in the Wedemeyer equation 
(l), namely the Stewartson number St, depends on R much more strongly than on SZ. 
So in order to achieve small St values it is preferable to  increase R rather than G? 
(provided that 52 is already large enough for the Ekman number to  be small). This 
leads again to the concept of a cylinder of small ratio of height to diameter. 

St = ~ @ p / ~ 2  = J;/R~ = ~ ~ t / p ~ t .  
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FIQURE 1.  Experimental apparatus. 1, Plexiglas cube with a cylindrical cavity, 2, in it; 3, two 
flat disks (or cones, 4, interchangeable with disks) ; 5, vertical axis. 

Secondly, Wedemeyer and successors posed the boundary condition of constant 
angular velocity at  the sidewall and considered the flow to be laminar. However, 
Weidman (1976a, b)  observed turbulence in the vicinity of the sidewall at  the initial 
stage of spin-up. The turbulence soon decays and a laminar initial state forms and 
develops. So it seems to be more appropriate to solve an initial-value problem rather 
than a boundary-value one (even in view of a certain vagueness of the initial state). 
In the present study experiments were conducted in a container with a non-rotating 
sidewall, which makes the boundary-value formulation even less appropriate. 
Nevertheless, this does not affect the flow far from the sidewall. The reproducibility 
and accordance with previous results allows to presume that the initial-value 
solution for spin-up tends to a unique limiting stage insensitive to the details of the 
initial state. 

The present paper is organized as follows. First we describe the experimental set- 
up common for K&M(a, b )  and this work. Next the principal results of K&M are 
reviewed in order to check the applicability of the Wedemeyer equation. Then the 
general-form solution of the Wedemeyer equation for spin-up is derived and it is 
shown to tend to a self-similar limiting case. Experimental results are described and 
compared with theory. 

2. Experimental set-up 
The laboratory apparatus (figure 1) consisted of a Plexiglas cube, 1, with a 

cylindrical cavity, 2, in it. Two flat disks, 3, (or cones, 4, with half-angle 8, = 78.7', 
cot 8, = $) of radius R = 10 cm were mounted in the cavity on a vertical axis, 5, of 
radius R, = 0.3 cm. (Note that cones were used in spin-down experiments only.) The 
gap between the edges of the disks and the inside wall of the cavity did not exceed 
0.05 cm. The distance H between disks ranged from 0.7 to 2.0 cm. The rotation rate 
of disks driven by an electric motor could be chosen in the range 1 to 10 s-l. The 
cavity was filled with the solution of glycerin in water ( u  = 0.014.05 cm*/s). The 
typical value of the Ekman and Stewartson numbers was of the order Note that 
in preceding studies E was an order or two less and St an order or two greater. 

16 FLM 234 
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All measurements were made with a DANTEC laser Doppler anemometer (LDA). 
Counter processor 55L90a provided accuracy of measurement of about 1.5 % or 
better. The data from the LDA were processed in a personal computer. Radial and 
azimuthal velocity components were measured separately in the horizontal 
symmetry plane a t  the radius r = (0 .24 .9 )R.  No measurements were made beyond 
the symmetry plane. Account of the laser beam refraction a t  curved walls of the 
vessel was taken in processing experimental data. 

The influence of the non-rotating sidewall is restricted to the region r > R - H  
when disks are rotating a t  a constant angular velocity (Dolzhanskii & Krymov 1985). 
Beyond this region the fluid is in solid-body rotation, which was verified by 
independently measuring angular velocities of the fluid and disks. 

3. Self-similar spin-down to rest 
The theoretical solution found in K&M(a)  for the case of quasi-solid-body- 

rotation spin-down to rest between infinite disks, is of the form (in dimensional 
variables) 

where 

- 22 w=- r H 2  r u=- v=-- 
t + t o ’  vhi ( t  + t o ) 2  ’ t + to ’  

H 
to = ~ 

o l o ( 5 2 V ) f  

(3) 

is defined by the initial rotation rate 52, v is the fluid viscosity, H is the distance 
between disks, (u, v, w) are the velocity components in the cylindrical coordinate 
system ( r ,  $, z )  and a. = 1.369 is the dimensionless Ekman suction parameter 
calculated for the Karman single-disk problem by Rogers & Lance (1960). Their 
results are relevant for our problem, because the solution (3) was obtained by 
matching internal and boundary-layer asymptotics, boundary-layer equations being 
the stationary KBrmBn equations for the single-disk problem. This is also the case for 
the conical geometry of Dolzhanskii (1985) and K&M(b). 

The corresponding experimental data obtained in a low cylinder are represented in 
figure 2 in the form of the time dependence of the quantity 0 = H/(w( t )  v)” According 
to (3), this dependence should be linear (the straight line in figure 2). This figure 
demonstrates good agreement between theoretical and experimental results. The 
value a. = 1.37 k0.02 calculated from experimental data for various 52 using least 
squares corresponds very well to that obtained by Rogers & Lance (1960) 
numerically. Figure 3 demonstrates the theoretical and experimental dependencies 
of radial velocity (dimensional) on time. Though the inertial oscillations play an 
essential role, the theoretical curve correctly describes the average behaviour of u(t) .  

It should be noted that this theory works if the Ekman number is less than about 
0.02. On the other hand, when E is greater than this value the linear theory 
(Dolzhanskii & Krymov 1985) is applicable. This is confirmed by experimental data. 

The full system of equations for the internal region and boundary layers coupled 
via Ekman suction was found in K & M (a) to admit a one-parameter family of self- 
similar substitutions, which unify time and radius dependence through a single 
variable E = rt2/(p-’) (p > 0 is the parameter). The two  asymptotic forms of such self- 
similar solutions represent (i) the power-law initial state v,, = ArP and (ii) the unique 
quasi-solid-rotation stage given by (3) with t o  = 0. The latter occupies the domain 
r $- t 2 / ( l - p )  when p > 1 and r < t 2 / ( l - P )  when p < 1, which shows that it widens with 
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FIGURE 2. The dependence of the dimensionless quantity 8 = H/(wv)t  on shifted dimensionless 
time t+ t , :  ---, formula (3); points - experiment at Ekman number: 0 ,  6 x  lo-*; 0,  1 x 
A, 1 . 4 ~ 1 0 - ~ ;  +, 1 . 7 ~ 1 0 - ~ ;  x ,  1 . 8 ~ 1 0 - ~  (atradiusr=l&). 

FIGURE 3. The radial velocity at radius r = L& during spin-down us. time: 
-, experiment; ---, theory (3). 

time. This can be understood if we notice that the fluid ‘forgets’ its initial state when 
t is significantly greater than to (cf. (3)). 

This was experimentally confirmed in K & M ( b )  for spin-down in the space between 
two cones : IzI < r cot 8,. Such a configuration was first considered by Dolzhanskii 
(1985), who demonstrated that boundary layers on conical surfaces and on disks are 
governed by the same Karman equations. Accordingly, the spin-down is qualitatively 
similar in these two cases, but the final stage of spin-down between cones is 
characterized by another radial dependence: v a r3/vt2.  So if the initial state is the 
solid rotation, one can expect to  observe the cubic dependence on r a t  large t .  

The self-similarity of spin-down between cones is demonstrated in figure 4, where 
the dimensionless angular velocity w/sZ (this quantity will be denoted from here on 
as w )  is plotted DS. the self-similar coordinate = r/t(sZv)i (the special case of p = 1, 
solid rotation initial state). The final stage with w a r2 is shown in figure 5. 

Let us now test the Wedemeyer approximation for spin-down. The dimensionless 
Ekman suction condition in this case takes the form 

u = ~ v i  r i  Ei 
16-2 



478 F .  V.  Dolzhunskii, V .  A .  Krymov and D .  Yu. Manin 

W 
0.5 

I 

0 
I ! 

15 30 
E 

5 

FIQURE 4. The dimensionless aFgular velocity w during spin-down between cones plotted 2)s. the 
self-similar variable 6 = r/ t (Qv)i .  Dashed curves correspond to asymptotic solutions ; experimental 
points are obtained at: 0,  r = 0.45, D = 2.5 s-'; 0 ,  r = 0.45, 52 = 11.3 s?; A, r = 0.56, 52 = 
2.6 s-l; +, r = 0.6, Q = 8.9 s-l. 
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FIGURE 5. Same as in figure 4, but vs. [' and for smaller [-values. The long-time asymptotic is the 
dashed line; experimental points are obtained at: 0,  r = 0.38, 52 = 13.9 s-'; 0 ,  r = 0.38, 52 = 
15.5 s-'; A, r = 0.56, 52 = 12.2 s-l; +, r = 0.56, Q = 15.7 S'. 
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(velocity is normalized here by QR, 52 being the initial angular velocity of the 
container). So instead of (1) we have 

(viscous term is neglected). It is readily seen that there is a solution identical to (3) 
with a, = K. The theoretical value a. = 1.369 is confirmed by experimental data, so 
K = 1.369 should be taken. This equation also admits the self-similar substitution 

2, = t--2p/(p--l) g(f), f = rt2/(P-l) 

( p  > 0 is a parameter) which leads to an ordinary differential equation for g(f) : 

This gives an asymptotic form g N const x fP, or v - const x r p ,  valid at large f if 
p > 1 and at small 6 if p < 1, i.e. at t + 0. Thus, these solutions correspond to power- 
law initial conditions. The asymptotic form a t  t + co is given by g - f / ~ ~ ,  or v - 
r/K2t2, which is again the quasi-solid-body spin-down to rest. 

From the above analysis it follows that the Wedemeyer approximation correctly 
describes the principal qualitative features of self-similar spin-down. However, to 
achieve quantitative agreement one should be careful about the value of K ,  which can 
vary if non-solid-body rotation is present (see K&M). Taking this all into account, 
we proceed now to the spin-up problem. 

4. The general-form solution of the Wedemeyer equation for spin-up 
Recall that the inviscid Wedemeyer equation 

has the solution found by Wedemeyer 

v = o  ( r  < e-xt), 

However, a general-form solution satisfying arbitrary initial conditions can be 

First, rewrite (4) in terms of angular velocity w = v / r :  
obtained. 

Wt - K (  1 - W )  ( 2 0  -k TW,) = 0 

(indices denote derivatives). Now let w and r be independent variables, and let us 
seek the solution t = t ( w ,  r ) .  Upon substituting wt = l/t, and w, = - t , / t ,  we obtain 

1-~(1-~)(2wt,-rt,) = 0. 

Next, denote f = lnw,p = lnr. This leads to 

1-K(1-ee5)(2tf-tp) = 0. 
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Introducing a ‘moving’ coordinate 6 = 6+2p, we get an ordinary differential 
equation 

1-2K(1-eC)tt = 0, t = t(6,C). 

This equation has an obvious general-form solution 

1 
t = F([)--ln (e-6- l), 

2K (7 )  

where F is an arbitrary function defined by the initial conditions. I n  fact, (7) can be 
rewritten in terms of the original variables: 

2 ~ t  = lnT(wr2)-1n --1 -lnT(wr2) = Flnwr2 (i ) ’  ( i K  

(the arbitrary function is redefined here), or in the final form 

w 
T(wr2). e 2 K t  - - - 

l--w 

Now a t  t = 0 we have w = wo(r) ,  which defines the function T. Consider for example 
the case w o ( r )  = 0 at r < 1 and 1 at r > 1. Then, evidently, x = wr2 = 0 at r < 1, w a t  
r = 1 and r2 at r > 1. From (8) it follows that T(x) = (1 -wo) /wo,  hence T(x) = 
(1 -x)/x a t  x < 1, and T(x) = 0 at x > 1.  This gives a solution in the form eZKt = 
(1 - wr2) / r2 (1  - w ) ,  equivalent to the Wedemeyer solution (5). 

An important class of solutions is obtained from (8) as a special case T(x) = P. This 
yields 

a 1 Waf1 
t--1nr = -1n- 

K 2K 1-0’ (9) 

Evidently, these are self-similar solutions, namely travelling waves which preserve 
their shape in the coordinates (In r ,  t). The asymptotic behaviour of (9) a t  r +  0, t = 
1 is w - r-2u/(1+a), which requires - 1 < a < 0. At r + 00, t = 1 we have from (9) w - 
t - r2a. 

The importance of travelling-wave solutions (9) is due to the fact that they serve 
as asymptotic forms for a wide class of solutions. In fact, let the initial state wo(r) I t - O  
satisfy the condition wo - r-2a/(1+a) when r + 0. If we denote x = wo r2 < 1, then a t  
x+O we get x - r2/(a+1), wo - x - ~  and T(x) - P, which leads to (9). Note that this 
asymptotic is valid for non-small values of w ; the only requirement is that wr2 should 
be small. 

The above argument cannot be directly applied to an experimental situation 
because of the dependence of the asymptotic solution on subtle details of the initial 
state, namely the angular velocity distribution at small radius values. Nevertheless 
it suggests analysis of the experimental results in an attempt to recognize the 
travelling wave solutions (9) as a universal stage of the spin-up process. In  other 
words, we hope that every experimental run should demonstrate one of solutions (9) 
with specific values of a and K, possibly dependent on the initial state. 

5. Experimental results 
As was pointed out above, the angular velocity of the fluid during spin-up was 

measured. The experimentally measured dependence of dimensionless angular 
velocity w on dimensionless time t a t  different values of radius r is presented in figure 
6. Corresponding parameter values are E = 2 x The initial stage St = 2.8 x 
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FIGURE 6. The dimensionless w us time for spin-up: -, Experimental data at E = 0.002, St = 
2 . 8 ~  for r = 0.86, 0.71, 0.64, 0.5, 0.44, 0.37, 0.28, 0.21 (curves 1-8 respectively); ---, 
travelling-wave solution (9) ; - - - -  -, Wedemeyer solution (5). 

of spin-up (curves 1, r = 0.86) is well described by the Wedemeyer solution (short- 
dashed curve). At  smaller radii the Wedemeyer solution fails (curves 2, r = 0.71).  
From here on, as r decreases, experimental curves approach one of the travelling- 
wave solutions (9), plotted in figure 6 by long-dashed curves. 

Recall that these solutions depend on two parameters, the Ekman suction 
coefficient K and the ‘propagation velocity’ c = K / a .  Note that K should be about 
unity (see Greenspan 1968), while the only a priori bound on c is c < - K .  The values 
of K and c were found in the following manner. First, the arrival time T of the spin- 
up front a t  a certain radius was plotted us. lnr as shown in figure 7. We considered 
the front position as the position of the inflexion point in the w ( t )  dependence. From 
figure 6 one can estimate that the accuracy of the front position thus determined is 
not worse than 10%. 

It is seen that the front propagates at  a constant velocity (in ( t ,  In r )  coordinates) 
nearly independent of external parameters in a certain range of E and St 
(experimental runs 2 4  in figure 7 represent only a part of all the experimental data 
used to determine c and K ) .  The velocity was taken as c = - 1.1. Then, c given, the 
value of K was chosen so that theoretical curves (9) would fit the corresponding 
experimental curves best. This procedure gives K = 1.0 for all pairs (E,  St) within the 
above-mentioned range which, oddly enough, is the value taken by Greenspan a few 
decades ago, see Greenspan (1968, p. 167). Thus, the class of solutions (9) is actually 
observed, and moreover, c and K values are unique and independent of the initial 
state. For run 1 ( E  = 0.0024) the velocity c substantially increases at  small r ,  and for 
E > 0.0025 the front propagation velocity is no longer more constant. The deviation 
of points in figure 7 (run 1) from a straight line exceeds the possible error in front 
position. The effect of non-small E and St is discussed below. 

Let us now take a closer view at figure 6. It can be seen that the departure of the 
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FIGURE 7. The arrival time of the front ws. radius (in log scale) at: 0, E = 2 . 4 ~  

St = 5.0 x 

St = 

; ---, exponential dependence on dimensionless ‘ front velocity ’ c = - 1.1. 
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FIGURE 8. Experimental curves o(t) shifted in time to demonstrate the uniqueness of their shape : 
-, E = 3 ~ 1 0 - ~ ,  S t = 7 ~ 1 0 - ~ ,  r=0 .61;  ----,  E = 6 x 1 W 4 ,  St=5x10-4, r=O.44. 7 ,  - - - -  ---, 
__ , E = 2 x St = 2 . 8 ~  r = 0.64; 0.44; 0.28. 

experimental curves from the Wedemeyer solution and their approach to the 
travelling-wave solution with c = - 1.1,  K = 1.0 proceeds from high to low values of 
w when radius decreases. At 0.3 < r < 0.5 the agreement is good. Figure 8 
demonstrates the uniqueness of the shape of the w ( t )  dependence in the self-similarity 
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FIQURE 9. Dimensionless w vs. r for t = 0.45, 0.6, 0.75, 0.9, 1.05, 1.2, 1.35, 1.5. Curves - theory 
(9), points - experiment with 0,  E = 2 x St = 2.8 x 0,  E = 6 x loA4, St = 5 x W4. 

range for different values of E ,  St and r.  All curves are shifted in t so that they can 
be compared directly. The theoretical curve is also plotted in this figure. The 
oscillations occurring at E < (figure 8) can be associated with a weak breakdown 
of the axial symmetry of the spin-up front. Their frequency is Q and the amplitude 
grows with decreasing E .  However, these oscillations have no effect on the average 
behaviour of o(t). 

Figure 7 shows that at  small radius values ( r  < 0.3) the front propagation velocity 
slightly increases. Accordingly, experimental curves depart from theoretical ones. 
This is connected with the effect of viscosity. In order to demonstrate it more clearly, 
in figure 9 the radial dependence of o is plotted for different t (two experimental runs : 
E = 6 x Figure 9 shows that the 
front becomes steeper, i.e. its width decreases. Theoretical dashed curves approx- 
imate experimental points rather well and it can be seen that the front width at 
t = 1.5 is of the order 0.1. When it becomes comparable to the characteristic 
Stewartson layer width the inviscid approximation is no longer valid. Note also that 
the considerable width of the front supports the assumption of the local KBrmanian 
structure of end-wall boundary layers. 

St = 5 x and E = 2 x St = 2.8 x 

6. Viscous spin-up 
In this section we briefly describe another limiting case, namely when E is 

relatively large and the fluid acceleration occurs principally because of the friction 
between horizontal fluid layers. Evidently in this case the angular velocity should be 
independent of radius beyond the vicinity of the sidewall. In fact, figure 10 
demonstrates the uniqueness of the temporal dependence of the angular velocity for 
different values of r ,  H ,  v. Note that the time is now scaled by the characteristic 
viscous time 7, = H 2 / v .  Only for r = 0.88 is a Wedemeyer-like curve observed. Other 
curves can be approximated (for 0.1 < w < 0.9) by an exponential function w = 
1 -exp (y( t , - t ) ) ,  y x 15, to x 0.034. 



484 F .  V.  Dolzhanskii, V .  A .  Krymov and D .  Yu. Manin 

1 

0 
0.5 

0 0.1 0.2 
t 

FIGURE 10. Experimental dependences w ( t )  for viscous spin-up (time here is not shifted). 
Parameters: 1-3, v = 0.01 cm2/s, a = 0.9 s-l, h = 0.8 cm (E = 0.017, St = 0.0008) at r = 0.88, 
0.57, 0.43; 4-5, v = 0.035 cm2/s, 52 = 0.9 s-l, h = 1.5 cm (E = 0.016, St = 0.03) at r = 0.66, 0.46. 

For large E values spin-up and spin-down are completely equivalent. The 
corresponding theory was constructed by Dolzhanskii & Krymov (1985) including a 
simple formula for meridional circulation. It is valid for E less than about 0.025 and 
yields y x 10. This value was also obtained experimentally by Dolzhanskii & 
Krymov (1985). The difference from y x 15 found in this work is probably due to the 
fact that E = 0.017 is not large enough for the theory to be fully valid. 

7. Conclusions 
Summarizing the results of this and previous investigations we plot the 

experimental conditions in figure 1 1  in a (InSt, In E)-plane. The horizontal dotted line 
marks the value E = 0.0025, found in this work to  be the upper bound for essentially 
inviscid vertical momentum transfer. With E > 0.0025 the propagation of the front 
speeds up owing to the vertical momentum diffusion which comes into effect with 
increasing E (see figure 10). 

The Stewartson number characterizes the horizontal momentum diffusion in the 
same way as E characterizes the vertical momentum diffusion. The vertical dotted 
line in figure 11 marks another upper bound, St = 0.001, for radially self-similar spin- 
up. The effect of the Stewartson number can be seen in figure 12, similar to figure 7 
of Hyun et al. (1983). It shows that the front arrival time approaches its limiting 
value when St < 0.001. 

The following principal results are obtained in the present work. 
(i) The applicability of the Wedemeyer model to strongly nonlinear spin-up and 

spin-down is demonstrated via comparison with analytical results of asymptotic 
theory (spin-down) and experimental data (both spin-up and spin-down). The 
applicability domain of the Wedemeyer approximation in the plane of the governing 
parameters E and St is estimated. 
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FIGURE 11. The experimental conditions for various experiments : 0, Hyun et al. (1983) ; 0, Savag 
(1985) ; 0, this work, viscous and non-self-similar spin-up; + , this work, self-similar spin-up. 
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FIGURE 12. The time of front arrival (lower points) and the time for o to reach 4 (upper points) at 
radius r = 0.39 as functions of St : 0, Hyun et al. (1983) ; A, Watkins & Hussey (1977) ; 0, Savag 
(1985); 0, this work; x , Wedemeyer solution (5). 

(ii) An exact solution of the initial-value problem for the Wedemeyer equation is 
found in an implicit form. 

(iii) Detailed characteristics of the spin-up from rest are obtained experimentally. 
It is shown that the final stage of spin-up is described by a unique self-similar 
solution of the type (9) (propagating-wave solutions) with parameter values 
independent of initial conditions and external parameters (aspect ratio, SZ, H )  in the 
applicability domain of the Wedemeyer equation. Another limiting case (relatively 
large Ekman number) is also examined. 

(iv) There is no explanation for the specific value of the front propagation velocity 
c = -1 .1  observed in this work. Though it is close to the limiting value c = 
--K = - 1.0, the difference is significant. (Otherwise the form of w ( t )  curves would 
be Wedemeyer- like. ) 
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